
Micromega Corporation 1 Revised 2005-05-05

This application note describes a suggested method of developing support software for connecting a
microcontroller to the uM-FPU V2 floating point coprocessor using an I2C interface.

Introduction
Micromega provides support software for many popular microcontrollers, so it’s worth checking the
Micromega website (http://www.micromegacorp.com) to see if software is already available for your
microcontroller, or email info@micromegacorp.com to enquire about any plans for development. If support
is not currently available for your microcontroller, you can easily develop your own support software. This
application note describes a suggested method for developing an I2C interface. Since implementation
details vary with each different microcontroller, pseudo-code is used to describe the actions of the each
routine, which can then be translated into assembly code, C or Basic for your microcontroller.

Additional Documents
Before getting started it is recommended that you review the uM-FPU V2 Datasheet, and the uM-FPU V2
Instruction Set documents. It is also recommended that the serial interface for the uM-FPU debug monitor
be connected as described in the uM-FPU V2 Datasheet. This provides access to valuable debugging
information while testing the support routines.

Support software and documentation provided by Micromega for other microcontrollers can also serve as a
good example of the code you will need to develop.

I2C Interface
The I2C interface uses two bi-directional lines, SCL and SDA, that are connected through a pull-up resistor
to the positive supply voltage, and shared by all connected devices. The uM-FPU can handle I2C data
speeds up to 400 kHz.

I2C Connection

CS
SOUT
SCL
VSS

VDD
TSTIN

TSTOUT
SDA

+5V
uM-FPU

SCL

SDA

Microcontroller Pins

+5V
Note: SDA and SCL must
have pull-up resistors as
required by the I2C bus.

RS-232 Rx
RS-232 Tx

Each connected device must have a unique slave address. The uM-FPU uses the 7-bit address mode. Data is
transferred using a protocol that consists of a Start condition, followed by data, and terminated by a Stop
condition (or in some cases a new Start conditon). The first byte following the Start condition is the 7-bit
uM-FPU slave address, followed by an 8th bit which specifies whether the microcontroller wishes to write

uM-FPU Application Note 8

Developing an I2C Interface
for uM-FPU V2

Developing an I2C Interface

Micromega Corporation 2 uM-FPU Application Note 8

data to the uM-FPU (0), or read data from the uM-FPU (1). The default slave address for the uM-FPU is
1100100x (binary).

 expressed as a 7-bit value (no Read/Write bit), the default uM-FPU address is 0x64 (hex), or 100
(decimal)

 expressed as a 8-bit value (Read/Write bit set to zero) the default uM-FPU address is 0xC8 (hex),
or 200 (decimal)

The slave address can be changed to another value and stored in nonvolatile flash memory using the built-
in serial debug monitor, as described in the uM-FPU V2 Datasheet.

The following diagrams show the write and read data transfers. The write transfer consists of a start
condition, slave address, write bit, and register address, followed by 0 to n data bytes and a stop condition.
A read transfer is normally preceded by a write transfer to select the register to read from. The read transfer
consists of a start condition, slave address, and read bit, followed by 0 to n data bytes and a stop condition.
A NAK should be sent on the last byte of a read transfer.

I2C Write Data Transfer

S A aaaaaaaa A dddddddd A dddddddd A01100100 P

S - Start Condition
A - ACK/NAK
P - Stop Condition

0 to n data bytes

Slave
Address

Register
Address Data Data

I2C Read Data Transfer

S A dddddddd A dddddddd A11100100 P

S - Start Condition
A - ACK/NAK
P - Stop Condition

1 to n data bytes

Slave
Address Data Data

I2C Registers

Register Address Write Read
0 Data Data / Status
1 Reset Buffer Space

I2C Device Level Support Routines
The I2C interface can be implemented with the following device level support routines:

i2c_master initializes the I2C interface for master mode
i2c_start sends the Start condition
i2c_stop sends the Stop condition
i2c_write writes a byte of data and returns the ACK/NAK value
i2c_readACK reads a byte of data and responds with an ACK
fpu_readNAK reads a byte of data and responds with a NAK

Implementation of the I2C device level support routines is not discussed in this application note. These are
common routines for use with any I2C device, and most compilers for microcontrollers provide support for
these or similar functions. Basic compilers generally have commands such as I2CWRITE, I2CREAD that

Developing an I2C Interface

Micromega Corporation 3 uM-FPU Application Note 8

allows writing and reading of multiple bytes to I2C devices. They handle the start condition, stop condition
and address byte. If you need to develop your own routines, there are many examples available to work
from.

uM-FPU Device Level Support Routines
The interface with the uM-FPU is described in terms of the I2C device level support routines listed above.

fpu_reset resets the uM-FPU
fpu_startWrite starts a write transfer
fpu_startRead starts a read transfer
fpu_readByte reads an 8-bit byte from the uM-FPU
fpu_wait waits until the uM-FPU buffer is empty
fpu_readDelay implements the required read delay

The steps required to implement the support routines are as follows:
1. Implement initial version of fpu_reset
2. Implement fpu_startWrite
3. Implement fpu_startRead
4. Implement fpu_readByte
5. Add synchronization check to fpu_reset
6. Implement fpu_wait
7. Implement fpu_readDelay
8. Create include file with uM-FPU opcode definitions

Step 1 – Implement initial version of fpu_reset
The uM-FPU must be reset at the start of every program to establish synchronization with the
microprocessor. This is the first routine that needs to be implemented. The fpu_reset routine sends the
reset command, waits for the uM-FPU to complete the reset code, then checks for proper synchronization
by sending a SYNC opcode (0xF0) and reading the response byte. Since we have not yet developed the
code to send and read data, we will add the synchronization check later (in step 5).

Parameters: none
Return: sync character
C prototype: unsigned char fpu_reset(void);
Pseudo-code:

i2c_start ; send Start condition
i2c_write(0xC8) ; send write address (uM-FPU address plus write bit)
i2c_write(1) ; select control register (register 1)
i2c_write(0) ; write 0 to control register (reset)
i2c_stop ; send Stop condition
delay for 8 milliseconds ; wait for reset to complete
return

Debug Monitor:
Whenever a reset occurs , the following message is displayed by the debug monitor:

{RESET}

Step 2 – Implement fpu_startWrite
This routine starts a write transfer to the uM-FPU, and is called before sending any instructions to the uM-
FPU. Data is sent to the uM-FPU using the i2c_write routine. The i2c_stop function is called to
terminate a write transfer.

Parameters: none

Developing an I2C Interface

Micromega Corporation 4 uM-FPU Application Note 8

Return: none
C prototype: void fpu_startWrite(void);
Pseudo-code:

i2c_start ; send Start condition
i2c_write(0xC8) ; send write address (uM-FPU address plus write bit)
i2c_write(0) ; select data register (register 0)
return

Write a test routine to send three bytes to the uM-FPU (e.g. 0x00, 0xFF and 0xAA).
fpu_reset
fpu_startWrite
i2c_write(0x00)
i2c_write(0xFF)
i2c_write(0xAA)
i2c_stop(

Debug Monitor:
If the instructions are received properly by the uM-FPU, the debug monitor will display the following:

00 FF AA

Step 3 – Implement fpu_startRead

This routine starts a read transfer, and is called before reading any data from the uM-FPU. Data is read
from the uM-FPU using either the i2c_readACK or i2c_readNAK functions. If multiple bytes are read,
i2c_readACK should be used for all bytes except the last byte. To ensure that the read transfer is
terminated properly, the last byte must be read using i2c_readNAK. If only a single byte is read,
i2c_readNAK should be used. The i2c_stop function is called to terminate a read transfer.

Parameters: none
Return: none
C prototype: void fpu_startRead(void);
Pseudo-code:

fpu_startWrite ; send Start condition, Write address, and select register 0
i2c_start ; send new Start condition
i2c_write(0xC9) ; send read address (uM-FPU address plus read bit)
return

Step 4 – Implement fpu_readByte

This routine can be called after any instruction that returns data from the uM-FPU. It waits for the Read
Setup Delay, then starts a read transfer, reads a single byte and terminates the read transfer. The byte read
from the uM-FPU is returned.

Parameters: none
Return: 8-bit value
C prototype: unsigned char fpu_readByte(void);
Pseudo-code:

fpu_readDelay ; wait for read delay
fpu_startRead ; send Start condition and Read address
n = i2c_readNAK ; read byte from uM-FPU
i2c_stop ; end the read transfer
return n ; return the byte

Developing an I2C Interface

Micromega Corporation 5 uM-FPU Application Note 8

Write a test routine to send the SYNC opcode (0xF0) to the uM-FPU and read the byte that is returned. If
SYNC is successful, a 0x5C byte will be returned. The sequence is as follows:

fpu_startWrite ; start write transfer
i2c_write(0xF0) ; send SYNC command
i2c_stop ; stop write transfer
n = fpu_readByte ; read the return value

Debug Monitor:
If the instructions are received properly by the uM-FPU, the debug monitor will display the following:

F0:5C

Step 5 – Add synchronization check to fpu_reset

Add the synchronization code shown above to the end of the fpu_reset routine. The byte that is read
after sending the SYNC opcode is returned by fpu_reset. The calling routine can check if the return
value is 0x5C to ensure that the reset and synchronization was successful. Note: In all other situations
fpu_wait must be called before sending an opcode that returns data, but fpu_wait is specifically not
used in the fpu_reset routine, since an 8 millisecond delay immediately precedes it, and the uM-FPU
will always be ready if the reset is successful. If the reset is not successful an fpu_wait could wait
indefinitely, so by not including it, the fpu_reset routine will always return with a value.

Step 6 – Implement fpu_wait
The fpu_wait routine is used to ensure that the 32-byte instruction buffer and the debug trace buffer are
both empty. The fpu_wait routine must always be called before data is read from the uM-FPU. It should
also be called at least once for every 32 bytes of output to ensure that the instruction buffer doesn’t
overflow. The busy/ready status is returned whenever the data register is read and no data is waiting to be
returned. If the uM-FPU is ready, a zero byte is returned. If the uM-FPU is busy, either executing
instructions, or because the debug monitor is active, a 0x80 byte is returned. The fpu_wait routine
continues to read the busy/ready status until the uM-FPU is ready.

Parameters: none
Return: none
C prototype: void fpu_wait(void);
Pseudo-code:

loop:
fpu_startRead
dataByte = i2c_readNAK ; read busy/ready status
i2c_stop ; wait until ready
if dataByte <> 0 then goto loop

return

Step 7 – Implement fpu_readDelay

Instructions that read data from the uM-FPU require a minimum 180 microseconds delay after the opcode
has been sent before data can be read (or 90 microseconds if debug trace is not enabled). The read delay
routine simply delays for 180 microseconds. In some implementations, the fpu_readDelay routine
may not be required if sufficient delay occurs due to the overhead associated with I2C bus protocol. For
future compatibility, and when operating at higher speeds, it is a good idea to still implement code using
fpu_readDelay before reading data.

Parameters: none
Return: none

Developing an I2C Interface

Micromega Corporation 6 uM-FPU Application Note 8

C prototype: void fpu_readDelay(void);
Pseudo-code:

delay for 180 microseconds ; delay for Read Setup Delay
return

Step 8 – Create include file with uM-FPU opcode definitions

To make it easer to write code for the uM-FPU, an include file should be created that contains definitions
for all of the uM-FPU opcodes and the sync character. Various include files are available on the
Micromega website and can easily be adapted as required.

Examples using the Device Level Support Routines

Calculate y = 5x + 30
fpu_startWrite ; start write transfer
i2c_write(SELECTA+Y) ; select Y register
i2c_write(LOADBYTE) ; load 5 to register 0 and convert to floating point
i2c_write(5)
i2c_write(FSET) ; y = 5.0
i2c_write(FMUL+X) ; y = y * x
i2c_write(LOADBYTE)
i2c_write(30) ; load 30 to register 0 and convert to floatint point
i2c_write(FADD) ; y = y + 30
i2c_stop ; end write transfer

Read byte from uM-FPU register n
fpu_wait ; wait until uM-FPU is ready
fpu_startWrite ; start write transfer
i2c_write(SELECTA+N) ; select N register (32-bit integer value)
i2c_write(XOP) ; send READBYTE instruction
i2c_write(READBYTE)
i2c_stop ; end the write transfer
n = fpu_readByte ; read the byte

Adding Additional Support Routines
The five device level support routines developed above provide all of the necessary support for using the
uM-FPU with your microcontroller. Using these device level routines, additional routines can be developed
to provide a higher level of support. Examples might include:

print_float print formatted floating point number
print_long print formatted long integer number
print_version print uM-FPU version number

load_float load floating point value
load_long load long integer value
load_floatStr load floating point string
load_longStr load long integer string

Further Information
Check the Micromega website at www.micromegacorp.com for up-to-date information.

